Non-homogeneous Markov models in the analysis of survival after breast cancer

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

A cohort of 300 women with breast cancer who were submitted for surgery is analysed by using a non-homogeneous Markov process. Three states are onsidered: no relapse, relapse and death. As relapse times change over time, we have extended previous approaches for a time homogeneous model to a non omogeneous multistate process. The trends of the hazard rate functions of transitions between states increase and then decrease, showing that a changepoint can be considered. Piecewise Weibull distributions are introduced as transition intensity functions. Covariates corresponding to treatments are incorporated in the model multiplicatively via these functions. The likelihood function is built for a general model with k changepoints and applied to the data set, the parameters are estimated and life-table and transition probabilities for treatments in different periods of time are given. The survival probability functions for different treatments are plotted and compared with the corresponding function for the homogeneous model. The survival functions for the various cohorts submitted for treatment are fitted to the mpirical survival functions.

Keywords: Covariates; Maximum likelihood estimate; Non-homogeneous Markov process; Survival data; Weibull distribution

Document Type: Original Article

DOI: http://dx.doi.org/10.1111/1467-9876.00223

Affiliations: Universidad de Granada, Spain

Publication date: January 1, 2001

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more