If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

A Discrete Variable Chain Graph for Applicants for Credit

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

A bank offering unsecured personal loans may be interested in several related outcome variables, including defaulting on the repayments, early repayment or failing to take up an offered loan. Current predictive models used by banks typically consider such variables individually. However, the fact that they are related to each other, and to many interrelated potential predictor variables, suggests that graphical models may provide an attractive alternative solution. We developed such a model for a data set of 15 variables measured on a set of 14 000 applications for unsecured personal loans. The resulting global model of behaviour enabled us to identify several previously unsuspected relationships of considerable interest to the bank. For example, we discovered important but obscure relationships between taking out insurance, prior delinquency with a credit card and delinquency with the loan.

Keywords: Chain graphs; Conditional independence models; Credit scoring; Finance

Document Type: Original Article

DOI: http://dx.doi.org/10.1111/1467-9876.00152

Affiliations: 1: Università di Perugia, Italy, 2: The Open University, Milton Keynes, UK

Publication date: January 1, 1999

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more