Skip to main content

Influence of human immunodeficiency virus infection on neurological impairment: an analysis of longitudinal binary data with informative drop-out

Buy Article:

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Abstract:

A study to investigate the human immunodeficiency virus (HIV) status on the course of neurological impairment, conducted by the HIV Center at Columbia University, followed a cohort of HIV positive and negative gay men for 5 years and assessed the presence or absence of neurological impairment every 6 months. Almost half of the subjects dropped out before the end of the study for reasons that might have been related to the missing neurological data. We propose likelihood-based methods for analysing such binary longitudinal data under informative and non-informative drop-out. A transition model is assumed for the binary response, and several models for the drop-out processes are considered which are functions of the response variable (neurological impairment). The likelihood ratio test is used to compare models with informative and non-informative drop-out mechanisms. Using simulations, we investigate the percentage bias and mean-squared error (MSE) of the parameter estimates in the transition model under various assumptions for the drop-out. We find evidence for informative drop-out in the study, and we illustrate that the bias and MSE for the parameters of the transition model are not directly related to the observed drop-out or missing data rates. The effect of HIV status on the neurological impairment is found to be statistically significant under each of the models considered for the drop-out, although the regression coefficient may be biased in certain cases. The presence and relative magnitude of the bias depend on factors such as the probability of drop-out conditional on the presence of neurological impairment and the prevalence of neurological impairment in the population under study.

Keywords: Binary outcome; Joint likelihood; Maximum likelihood estimation; Missing data; Transition model

Document Type: Research Article

Affiliations: New York State Psychiatric Institute, New York, USA

Publication date: January 1, 1999

bpl/rssc/1999/00000048/00000001/art00143
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more