Skip to main content

Spatial variation in risk of disease: a nonparametric binary regression approach

Buy Article:

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Abstract:

A common problem in environmental epidemiology is the estimation and mapping of spatial variation in disease risk. In this paper we analyse data from the Walsall District Health Authority, UK, concerning the spatial distributions of cancer cases compared with controls sampled from the population register. We formulate the risk estimation problem as a nonparametric binary regression problem and consider two different methods of estimation. The first uses a standard kernel method with a cross-validation criterion for choosing the associated bandwidth parameter. The second uses the framework of the generalized additive model (GAM) which has the advantage that it can allow for additional explanatory variables, but is computationally more demanding. For the Walsall data, we obtain similar results using either the kernel method with controls stratified by age and sex to match the age-sex distribution of the cases or the GAM method with random controls but incorporating age and sex as additional explanatory variables. For cancers of the lung or stomach, the analysis shows highly statistically significant spatial variation in risk. For the less common cancers of the pancreas, the spatial variation in risk is not statistically significant.

Keywords: Binary regression; Cross-validation; Epidemiology; Generalized additive models; Kernel smoothing

Document Type: Research Article

Affiliations: Lancaster University, UK

Publication date: April 1, 1998

bpl/rssc/1998/00000047/00000004/art00128
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more