Skip to main content

Grouped data exponentially weighted moving average control charts

Buy Article:

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.


In the manufacture of metal fasteners in a progressive die operation, and other industrial situations, important quality dimensions cannot be measured on a continuous scale, and manufactured parts are classified into groups by using a step gauge. This paper proposes a version of exponentially weighted moving average (EWMA) control charts that are applicable to monitoring the grouped data for process shifts. The run length properties of this new grouped data EWMA chart are compared with similar results previously obtained for EWMA charts for variables data and with those for cumulative sum (CUSUM) schemes based on grouped data. Grouped data EWMA charts are shown to be nearly as efficient as variables-based EWMA charts and are thus an attractive alternative when the collection of variables data is not feasible. In addition, grouped data EWMA charts are less affected by the discreteness that is inherent in grouped data than are grouped data CUSUM charts. In the metal fasteners application, grouped data EWMA charts were simple to implement and allowed the rapid detection of undesirable process shifts.

Keywords: Cumulative sum; Exponentially weighted moving average; Grouped data; Process shifts

Document Type: Research Article

Affiliations: University of Waterloo, Canada

Publication date: January 1, 1998


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more