Skip to main content

Bayesian Model Averaging in Proportional Hazard Models: Assessing the Risk of a Stroke

Buy Article:

$43.00 plus tax (Refund Policy)

In the context of the Cardiovascular Health Study, a comprehensive investigation into the risk factors for strokes, we apply Bayesian model averaging to the selection of variables in Cox proportional hazard models. We use an extension of the leaps-and-bounds algorithm for locating the models that are to be averaged over and make available S-PLUS software to implement the methods. Bayesian model averaging provides a posterior probability that each variable belongs in the model, a more directly interpretable measure of variable importance than a P-value. P-values from models preferred by stepwise methods tend to overstate the evidence for the predictive value of a variable and do not account for model uncertainty. We introduce the partial predictive score to evaluate predictive performance. For the Cardiovascular Health Study, Bayesian model averaging predictively outperforms standard model selection and does a better job of assessing who is at high risk for a stroke.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Bayesian model averaging; Model uncertainty; Stroke risk factors; Variable selection

Document Type: Original Article

Affiliations: University of Washington, Seattle, USA

Publication date: 1997-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more