Skip to main content

Confidence intervals for low dimensional parameters in high dimensional linear models

Buy Article:

$51.00 plus tax (Refund Policy)

The purpose of this paper is to propose methodologies for statistical inference of low dimensional parameters with high dimensional data. We focus on constructing confidence intervals for individual coefficients and linear combinations of several of them in a linear regression model, although our ideas are applicable in a much broader context. The theoretical results that are presented provide sufficient conditions for the asymptotic normality of the proposed estimators along with a consistent estimator for their finite dimensional covariance matrices. These sufficient conditions allow the number of variables to exceed the sample size and the presence of many small non‐zero coefficients. Our methods and theory apply to interval estimation of a preconceived regression coefficient or contrast as well as simultaneous interval estimation of many regression coefficients. Moreover, the method proposed turns the regression data into an approximate Gaussian sequence of point estimators of individual regression coefficients, which can be used to select variables after proper thresholding. The simulation results that are presented demonstrate the accuracy of the coverage probability of the confidence intervals proposed as well as other desirable properties, strongly supporting the theoretical results.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Confidence interval; High dimension; Linear regression model; Statistical inference; p‐value

Document Type: Research Article

Publication date: 2014-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more