Skip to main content

Conditional transformation models

Buy Article:

$51.00 plus tax (Refund Policy)


The ultimate goal of regression analysis is to obtain information about the conditional distribution of a response given a set of explanatory variables. This goal is, however, seldom achieved because most established regression models estimate only the conditional mean as a function of the explanatory variables and assume that higher moments are not affected by the regressors. The underlying reason for such a restriction is the assumption of additivity of signal and noise. We propose to relax this common assumption in the framework of transformation models. The novel class of semiparametric regression models proposed herein allows transformation functions to depend on explanatory variables. These transformation functions are estimated by regularized optimization of scoring rules for probabilistic forecasts, e.g. the continuous ranked probability score. The corresponding estimated conditional distribution functions are consistent. Conditional transformation models are potentially useful for describing possible heteroscedasticity, comparing spatially varying distributions, identifying extreme events, deriving prediction intervals and selecting variables beyond mean regression effects. An empirical investigation based on a heteroscedastic varying‐coefficient simulation model demonstrates that semiparametric estimation of conditional distribution functions can be more beneficial than kernel‐based non‐parametric approaches or parametric generalized additive models for location, scale and shape.

Keywords: Boosting; Conditional distribution function; Conditional quantile function; Continuous ranked probability score; Prediction intervals; Structured additive regression

Document Type: Research Article


Publication date: January 1, 2014


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more