Skip to main content

Large covariance estimation by thresholding principal orthogonal complements

Buy Article:

$43.00 plus tax (Refund Policy)

Summary

The paper deals with the estimation of a high dimensional covariance with a conditional sparsity structure and fast diverging eigenvalues. By assuming a sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross‐sectional correlation even after taking out common but unobservable factors. We introduce the principal orthogonal complement thresholding method ‘POET’ to explore such an approximate factor structure with sparsity. The POET‐estimator includes the sample covariance matrix, the factor‐based covariance matrix, the thresholding estimator and the adaptive thresholding estimator as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the effect of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2013-09-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more