Joint composite estimating functions in spatiotemporal models

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Summary.  Modelling of spatiotemporal processes has received considerable attention in recent statistical research. However, owing to the high dimensionality of the data, the joint modelling of spatial and temporal processes presents a great computational challenge, in both likelihood‐based and Bayesian approaches. We propose a joint composite estimating function approach to estimating spatiotemporal covariance structures. This substantially reduces the computational complexity and is more efficient than existing composite likelihood methods. The novelty of the proposed joint composite estimating function is rooted in the construction of three sets of estimating functions from spatial, temporal and spatiotemporal cross‐pairs, which results in overidentified estimating functions. Thus, we form a joint inference function in a spirit that is similar to Hansen's generalized method of moments. We show that under practical scenarios the estimator proposed is consistent and asymptotically normal. Simulation studies prove that our method performs well in finite samples. Finally, we illustrate the joint composite estimating function method by estimating the spatiotemporal dependence structure of airborne particulates (PM10) in the north‐eastern USA over a 32‐month period.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1467-9868.2012.01035.x

Affiliations: University of Michigan, Ann Arbor, USA

Publication date: November 1, 2012

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more