Achieving near perfect classification for functional data

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Summary.  We show that, in functional data classification problems, perfect asymptotic classification is often possible, making use of the intrinsic very high dimensional nature of functional data. This performance is often achieved by linear methods, which are optimal in important cases. These results point to a marked contrast between classification for functional data and its counterpart in conventional multivariate analysis, where the dimension is kept fixed as the sample size diverges. In the latter setting, linear methods can sometimes be quite inefficient, and there are no prospects for asymptotically perfect classification, except in pathological cases where, for example, a variance vanishes. By way of contrast, in finite samples of functional data, good performance can be achieved by truncated versions of linear methods. Truncation can be implemented by partial least squares or projection onto a finite number of principal components, using, in both cases, cross‐validation to determine the truncation point. We establish consistency of the cross‐validation procedure.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1467-9868.2011.01003.x

Affiliations: University of Melbourne, Australia

Publication date: March 1, 2012

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more