Skip to main content

Cumulative incidence association models for bivariate competing risks data

Buy Article:

$43.00 plus tax (Refund Policy)

Summary.  Association models, like frailty and copula models, are frequently used to analyse clustered survival data and to evaluate within‐cluster associations. The assumption of non‐informative censoring is commonly applied to these models, though it may not be true in many situations. We consider bivariate competing risk data and focus on association models specified for the bivariate cumulative incidence function (CIF), which is a non‐parametrically identifiable quantity. Copula models are proposed which relate the bivariate CIF to its corresponding univariate CIFs, similarly to independently right‐censored data, and accommodate frailty models for the bivariate CIF. Two estimating equations are developed to estimate the association parameter, permitting the univariate CIFs to be estimated either parametrically or non‐parametrically. Goodness‐of‐fit tests are presented for formally evaluating the parametric models. Both estimators perform well with moderate sample sizes in simulation studies. The practical use of the methodology is illustrated in an analysis of dementia associations.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: 1: University of Pittsburgh, USA 2: University of North Carolina at Chapel Hill, USA

Publication date: 2012-03-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more