Skip to main content

Functional singular component analysis

Buy Article:

$43.00 plus tax (Refund Policy)


Aiming at quantifying the dependence of pairs of functional data (X,Y), we develop the concept of functional singular value decomposition for covariance and functional singular component analysis, building on the concept of ‘canonical expansion’ of compact operators in functional analysis. We demonstrate the estimation of the resulting singular values, functions and components for the practically relevant case of sparse and noise-contaminated longitudinal data and provide asymptotic consistency results. Expanding bivariate functional data into singular functions emerges as a natural extension of the popular functional principal component analysis for single processes to the case of paired processes. A natural application of the functional singular value decomposition is a measure of functional correlation. Owing to the involvement of an inverse operation, most previously considered functional correlation measures are plagued by numerical instabilities and strong sensitivity to the choice of smoothing parameters. These problems are exacerbated for the case of sparse longitudinal data, on which we focus. The functional correlation measure that is derived from the functional singular value decomposition behaves well with respect to numerical stability and statistical error, as we demonstrate in a simulation study. Practical feasibility for applications to longitudinal data is illustrated with examples from a study on aging and on-line auctions.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Bivariate stochastic process; Functional correlation; Functional data analysis; Longitudinal data; Principal component; Singular component; Singular value decomposition

Document Type: Research Article

Affiliations: 1: University of California at Davis, USA 2: Universität Ulm, Germany

Publication date: 01 June 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more