Skip to main content

A new approach to cluster analysis: the clustering-function-based method

Buy Article:

$51.00 plus tax (Refund Policy)


The purpose of the paper is to present a new statistical approach to hierarchical cluster analysis with n objects measured on p variables. Motivated by the model of multivariate analysis of variance and the method of maximum likelihood, a clustering problem is formulated as a least squares optimization problem, simultaneously solving for both an n-vector of unknown group membership of objects and a linear clustering function. This formulation is shown to be linked to linear regression analysis and Fisher linear discriminant analysis and includes principal component regression for tackling multicollinearity or rank deficiency, polynomial or B-splines regression for handling non-linearity and various variable selection methods to eliminate irrelevant variables from data analysis. Algorithmic issues are investigated by using sign eigenanalysis.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Discriminant analysis; Gene expression data; Regression analysis; Sign eigenanalysis; Unsupervised learning

Document Type: Research Article

Affiliations: Loughborough University, UK

Publication date: 2006-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more