Skip to main content

Real nonparametric regression using complex wavelets

Buy Article:

$43.00 plus tax (Refund Policy)

Summary. 

Wavelet shrinkage is an effective nonparametric regression technique, especially when the underlying curve has irregular features such as spikes or discontinuities. The basic idea is simple: take the discrete wavelet transform of data consisting of a signal corrupted by noise; shrink or remove the wavelet coefficients to remove the noise; then invert the discrete wavelet transform to form an estimate of the true underlying curve. Various researchers have proposed increasingly sophisticated methods of doing this by using real-valued wavelets. Complex-valued wavelets exist but are rarely used. We propose two new complex-valued wavelet shrinkage techniques: one based on multiwavelet style shrinkage and the other using Bayesian methods. Extensive simulations show that our methods almost always give significantly more accurate estimates than methods based on real-valued wavelets. Further, our multiwavelet style shrinkage method is both simpler and dramatically faster than its competitors. To understand the excellent performance of this method we present a new risk bound on its hard thresholded coefficients.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Complex normal distribution; Complex-valued wavelets; Curve estimation; Empirical Bayes method; Multiwavelets; Wavelet shrinkage

Document Type: Research Article

Affiliations: University of Bristol, UK

Publication date: 01 November 2004

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more