Skip to main content

Approximating likelihoods for large spatial data sets

Buy Article:

$51.00 plus tax (Refund Policy)

Summary. 

Likelihood methods are often difficult to use with large, irregularly sited spatial data sets, owing to the computational burden. Even for Gaussian models, exact calculations of the likelihood for n observations require O(n3) operations. Since any joint density can be written as a product of conditional densities based on some ordering of the observations, one way to lessen the computations is to condition on only some of the ‘past’ observations when computing the conditional densities. We show how this approach can be adapted to approximate the restricted likelihood and we demonstrate how an estimating equations approach allows us to judge the efficacy of the resulting approximation. Previous work has suggested conditioning on those past observations that are closest to the observation whose conditional density we are approximating. Through theoretical, numerical and practical examples, we show that there can often be considerable benefit in conditioning on some distant observations as well.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Chlorophyll fluorescence; Estimating equations; Restricted maximum likelihood; Variogram estimation

Document Type: Research Article

Publication date: 2004-04-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more