Skip to main content

Semiparametric models: a generalized self-consistency approach

Buy Article:

$43.00 plus tax (Refund Policy)


In semiparametric models, the dimension d of the maximum likelihood problem is potentially unlimited. Conventional estimation methods generally behave like O(d3). A new O(d) estimation procedure is proposed for a large class of semiparametric models. Potentially unlimited dimension is handled in a numerically efficient way through a Nelson–Aalen-like estimator. Discussion of the new method is put in the context of recently developed minorization–maximization algorithms based on surrogate objective functions. The procedure for semiparametric models is used to demonstrate three methods to construct a surrogate objective function: using the difference of two concave functions, the EM way and the new quasi-EM (QEM) approach. The QEM approach is based on a generalization of the EM-like construction of the surrogate objective function so it does not depend on the missing data representation of the model. Like the EM algorithm, the QEM method has a dual interpretation, a result of merging the idea of surrogate maximization with the idea of imputation and self-consistency. The new approach is compared with other possible approaches by using simulations and analysis of real data. The proportional odds model is used as an example throughout the paper.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: EM algorithm; Frailty; Nonparametric maximum likelihood estimation; Profile likelihood; Semiparametric models

Document Type: Research Article

Affiliations: University of Utah, Salt Lake City, USA

Publication date: 01 August 2003

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more