Bayesian inference for non-stationary spatial covariance structure via spatial deformations

Authors: Schmidt, Alexandra M.1; O'Hagan, Anthony2

Source: Journal of the Royal Statistical Society: Series B (Statistical Methodology), Volume 65, Number 3, August 2003 , pp. 743-758(16)

Publisher: Wiley-Blackwell

Buy & download fulltext article:

OR

Price: $48.00 plus tax (Refund Policy)

Abstract:

Summary.

In geostatistics it is common practice to assume that the underlying spatial process is stationary and isotropic, i.e. the spatial distribution is unchanged when the origin of the index set is translated and under rotation about the origin. However, in environmental problems, such assumptions are not realistic since local influences in the correlation structure of the spatial process may be found in the data. The paper proposes a Bayesian model to address the anisot- ropy problem. Following Sampson and Guttorp, we define the correlation function of the spatial process by reference to a latent space, denoted by D, where stationarity and isotropy hold. The space where the gauged monitoring sites lie is denoted by G. We adopt a Bayesian approach in which the mapping between G and D is represented by an unknown function d(·). A Gaussian process prior distribution is defined for d(·). Unlike the Sampson–Guttorp approach, the mapping of both gauged and ungauged sites is handled in a single framework, and predictive inferences take explicit account of uncertainty in the mapping. Markov chain Monte Carlo methods are used to obtain samples from the posterior distributions. Two examples are discussed: a simulated data set and the solar radiation data set that also was analysed by Sampson and Guttorp.

Keywords: Anisotropy; Augmented covariance matrix; Environmental monitoring; Gaussian process; Spatial deformation

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/1467-9868.00413

Affiliations: 1: Federal University of Rio de Janeiro, Brazil 2: University of Sheffield, UK

Publication date: August 1, 2003

Related content

Tools

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page