If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Estimating the association parameter for copula models under dependent censoring

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Summary.

Many biomedical studies involve the analysis of multiple events. The dependence between the times to these end points is often of scientific interest. We investigate a situation when one end point is subject to censoring by the other. The model assumptions of Day and co-workers and Fine and co-workers are extended to more general structures where the level of association may vary with time. Two types of estimating function are proposed. Asymptotic properties of the proposed estimators are derived. Their finite sample performance is studied via simulations. The inference procedures are applied to two real data sets for illustration.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more