Sequential classification on partially ordered sets

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Summary.

A general theorem on the asymptotically optimal sequential selection of experiments is presented and applied to a Bayesian classification problem when the parameter space is a finite partially ordered set. The main results include establishing conditions under which the posterior probability of the true state converges to 1 almost surely and determining optimal rates of convergence. Properties of a class of experiment selection rules are explored.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more