If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Regression model selection—a residual likelihood approach

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Summary.

We obtain the residual information criterion RIC, a selection criterion based on the residual log-likelihood, for regression models including classical regression models, Box–Cox transformation models, weighted regression models and regression models with autoregressive moving average errors. We show that RIC is a consistent criterion, and that simulation studies for each of the four models indicate that RIC provides better model order choices than the Akaike information criterion, corrected Akaike information criterion, final prediction error, Cp and Radj2, except when the sample size is small and the signal-to-noise ratio is weak. In this case, none of the criteria performs well. Monte Carlo results also show that RIC is superior to the consistent Bayesian information criterion BIC when the signal-to-noise ratio is not weak, and it is comparable with BIC when the signal-to-noise ratio is weak and the sample size is large.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more