Skip to main content

Posterior probability intervals for wavelet thresholding

Buy Article:

$43.00 plus tax (Refund Policy)

Summary. We use cumulants to derive Bayesian credible intervals for wavelet regression estimates. The first four cumulants of the posterior distribution of the estimates are expressed in terms of the observed data and integer powers of the mother wavelet functions. These powers are closely approximated by linear combinations of wavelet scaling functions at an appropriate finer scale. Hence, a suitable modification of the discrete wavelet transform allows the posterior cumulants to be found efficiently for any given data set. Johnson transformations then yield the credible intervals themselves. Simulations show that these intervals have good coverage rates, even when the underlying function is inhomogeneous, where standard methods fail. In the case where the curve is smooth, the performance of our intervals remains competitive with established nonparametric regression methods.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Bayes estimation; Cumulants; Curve estimation; Interval estimates; Johnson curves; Nonparametric regression; Powers of wavelets

Document Type: Research Article

Affiliations: University of Bristol, UK

Publication date: 2002-05-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more