Skip to main content

Improving survey-weighted least squares regression

Buy Article:

$43.00 plus tax (Refund Policy)

The weighted least squares (WLS) estimator is often employed in linear regression using complex survey data to deal with the bias in ordinary least squares (OLS) arising from informative sampling. In this paper a ‘quasi-Aitken WLS’ (QWLS) estimator is proposed. QWLS modifies WLS in the same way that Cragg’s quasi-Aitken estimator modifies OLS. It weights by the usual inverse sample inclusion probability weights multiplied by a parameterized function of covariates, where the parameters are chosen to minimize a variance criterion. The resulting estimator is consistent for the superpopulation regression coefficient under fairly mild conditions and has a smaller asymptotic variance than WLS.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Complex survey data; Heteroscedasticity; Quasi-Aitken estimation; Weighted least squares

Document Type: Original Article

Affiliations: McMaster University, Hamilton, Canada

Publication date: 1998-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more