Skip to main content

Weighting for unequal selection probabilities in multilevel models

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

When multilevel models are estimated from survey data derived using multistage sampling, unequal selection probabilities at any stage of sampling may induce bias in standard estimators, unless the sources of the unequal probabilities are fully controlled for in the covariates. This paper proposes alternative ways of weighting the estimation of a two-level model by using the reciprocals of the selection probabilities at each stage of sampling. Consistent estimators are obtained when both the sample number of level 2 units and the sample number of level 1 units within sampled level 2 units increase. Scaling of the weights is proposed to improve the properties of the estimators and to simplify computation. Variance estimators are also proposed. In a limited simulation study the scaled weighted estimators are found to perform well, although non-negligible bias starts to arise for informative designs when the sample number of level 1 units becomes small. The variance estimators perform extremely well. The procedures are illustrated using data from the survey of psychiatric morbidity.

Keywords: Hierarchical linear model; Iterative generalized least squares; Multistage sampling; Pseudolikelihood; Scaled weights; Variance components

Document Type: Original Article

DOI: https://doi.org/10.1111/1467-9868.00106

Affiliations: 1: Hebrew University, Jerusalem, Israel, 2: University of Southampton, UK, 3: Institute of Education, London, UK

Publication date: 1998-01-01

  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more