Skip to main content

Sample size estimation for alternating logistic regressions analysis of multilevel randomized community trials of under‐age drinking

Buy Article:

$43.00 plus tax (Refund Policy)

Summary.  Under‐age drinking is an enormous public health issue in the USA. Evidence that community level structures may impact on under‐age drinking has led to a proliferation of efforts to change the environment surrounding the use of alcohol. Although the focus of these efforts is to reduce drinking by individual youths, environmental interventions are typically implemented at the community level with entire communities randomized to the same intervention condition. A distinct feature of these trials is the tendency of the behaviours of individuals residing in the same community to be more alike than that of others residing in different communities, which is herein called ‘clustering’. Statistical analyses and sample size calculations must account for this clustering to avoid type I errors and to ensure an appropriately powered trial. Clustering itself may also be of scientific interest. We consider the alternating logistic regressions procedure within the population‐averaged modelling framework to estimate the effect of a law enforcement intervention on the prevalence of under‐age drinking behaviours while modelling the clustering at multiple levels, e.g. within communities and within neighbourhoods nested within communities, by using pairwise odds ratios. We then derive sample size formulae for estimating intervention effects when planning a post‐test‐only or repeated cross‐sectional community‐randomized trial using the alternating logistic regressions procedure.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Wake Forest University School of Medicine, Winston-Salem, USA 2: University of North Carolina School of Public Health, Chapel Hill, USA 3: Wake Forest University School of Medicine, Winston-Salem USA

Publication date: 2012-07-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more