Skip to main content

Accounting for uncertainty in health economic decision models by using model averaging

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Summary. 

Health economic decision models are subject to considerable uncertainty, much of which arises from choices between several plausible model structures, e.g. choices of covariates in a regression model. Such structural uncertainty is rarely accounted for formally in decision models but can be addressed by model averaging. We discuss the most common methods of averaging models and the principles underlying them. We apply them to a comparison of two surgical techniques for repairing abdominal aortic aneurysms. In model averaging, competing models are usually either weighted by using an asymptotically consistent model assessment criterion, such as the Bayesian information criterion, or a measure of predictive ability, such as Akaike's information criterion. We argue that the predictive approach is more suitable when modelling the complex underlying processes of interest in health economics, such as individual disease progression and response to treatment.

Keywords: Akaike's information criterion; Bayesian information criterion; Health economics; Model averaging; Model uncertainty

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1467-985X.2008.00573.x

Affiliations: Medical Research Council Biostatistics Unit, Cambridge,UK

Publication date: April 1, 2009

bpl/rssa/2009/00000172/00000002/art00005
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more