Joint projections of temperature and precipitation change from multiple climate models: a hierarchical Bayesian approach

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Summary. 

Posterior distributions for the joint projections of future temperature and precipitation trends and changes are derived by applying a Bayesian hierachical model to a rich data set of simulated climate from general circulation models. The simulations that are analysed here constitute the future projections on which the Intergovernmental Panel on Climate Change based its recent summary report on the future of our planet's climate, albeit without any sophisticated statistical handling of the data. Here we quantify the uncertainty that is represented by the variable results of the various models and their limited ability to represent the observed climate both at global and at regional scales. We do so in a Bayesian framework, by estimating posterior distributions of the climate change signals in terms of trends or differences between future and current periods, and we fully characterize the uncertain nature of a suite of other parameters, like biases, correlation terms and model-specific precisions. Besides presenting our results in terms of posterior distributions of the climate signals, we offer as an alternative representation of the uncertainties in climate change projections the use of the posterior predictive distribution of a new model's projections. The results from our analysis can find straightforward applications in impact studies, which necessitate not only best guesses but also a full representation of the uncertainty in climate change projections. For water resource and crop models, for example, it is vital to use joint projections of temperature and precipitation to represent the characteristics of future climate best, and our statistical analysis delivers just that.

Keywords: Climate change; Intergovernmental Panel on Climate Change fourth assessment report; Multimodel ensembles; Probabilistic projections; Temperature and precipitation change

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1467-985X.2008.00545.x

Affiliations: 1: Climate Central, Princeton, USA 2: University of California, Santa Cruz, USA

Publication date: January 1, 2009

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more