Skip to main content

Bias modelling in evidence synthesis

Buy Article:

$48.00 plus tax (Refund Policy)

Abstract:

Summary. 

Policy decisions often require synthesis of evidence from multiple sources, and the source studies typically vary in rigour and in relevance to the target question. We present simple methods of allowing for differences in rigour (or lack of internal bias) and relevance (or lack of external bias) in evidence synthesis. The methods are developed in the context of reanalysing a UK National Institute for Clinical Excellence technology appraisal in antenatal care, which includes eight comparative studies. Many were historically controlled, only one was a randomized trial and doses, populations and outcomes varied between studies and differed from the target UK setting. Using elicited opinion, we construct prior distributions to represent the biases in each study and perform a bias-adjusted meta-analysis. Adjustment had the effect of shifting the combined estimate away from the null by approximately 10%, and the variance of the combined estimate was almost tripled. Our generic bias modelling approach allows decisions to be based on all available evidence, with less rigorous or less relevant studies downweighted by using computationally simple methods.

Keywords: Bias; Elicitation; Evidence synthesis; Heterogeneity; Meta-analysis

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1467-985X.2008.00547.x

Affiliations: 1: Medical Research Council Biostatistics Unit, Cambridge, UK 2: University of Cambridge, UK

Publication date: January 1, 2009

bpl/rssa/2009/00000172/00000001/art00003
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more