If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Modelling the evolution of distributions: an application to Major League baseball

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Summary. 

We develop Bayesian techniques for modelling the evolution of entire distributions over time and apply them to the distribution of team performance in Major League baseball for the period 1901–2000. Such models offer insight into many key issues (e.g. competitive balance) in a way that regression-based models cannot. The models involve discretizing the distribution and then modelling the evolution of the bins over time through transition probability matrices. We allow for these matrices to vary over time and across teams. We find that, with one exception, the transition probability matrices (and, hence, competitive balance) have been remarkably constant across time and over teams. The one exception is the Yankees, who have outperformed all other teams.

Keywords: Bayesian; Gibbs sampler; Ordered probit; Sports statistics

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1467-985X.2004.A473.x

Affiliations: University of Leicester, UK

Publication date: November 1, 2004

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more