If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Estimating the underlying change in unemployment in the UK

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Download / Buy Article:

Abstract:

By setting up a suitable time series model in state space form, the latest estimate of the underlying current change in a series may be computed by the Kalman filter. This may be done even if the observations are only available in a time-aggregated form subject to survey sampling error. A related series, possibly observed more frequently, may be used to improve the estimate of change further. The paper applies these techniques to the important problem of estimating the underlying monthly change in unemployment in the UK measured according to the definition of the International Labour Organisation by the Labour Force Survey. The fitted models suggest a reduction in root-mean-squared error of around 10% over a simple estimate based on differences if a univariate model is used and a further reduction of 50% if information on claimant counts is taken into account. With seasonally unadjusted data, the bivariate model offers a gain of roughly 40% over the use of annual differences. For both adjusted and unadjusted data, there is a further gain of around 10% if the next month's figure on claimant counts is used. The method preferred is based on a bivariate model with unadjusted data. If the next month's claimant count is known, the root-mean-squared error for the estimate of change is just over 10000.

Keywords: Co-integration; Common trends; Kalman filter; Mixed frequency data; Rotating sample; Survey data

Document Type: Research Article

Affiliations: 1: University of Cambridge, UK 2: Jardine Fleming Asset Management, Taipei, Taiwan

Publication date: January 1, 2000

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more