Skip to main content

Classical multilevel and Bayesian approaches to population size estimation using multiple lists

Buy Article:

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.


One of the major objections to the standard multiple-recapture approach to population estimation is the assumption of homogeneity of individual ‘capture’ probabilities. Modelling individual capture heterogeneity is complicated by the fact that it shows up as a restricted form of interaction among lists in the contingency table cross-classifying list memberships for all individuals. Traditional log-linear modelling approaches to capture–recapture problems are well suited to modelling interactions among lists but ignore the special dependence structure that individual heterogeneity induces. A random-effects approach, based on the Rasch model from educational testing and introduced in this context by Darroch and co-workers and Agresti, provides one way to introduce the dependence resulting from heterogeneity into the log-linear model; however, previous efforts to combine the Rasch-like heterogeneity terms additively with the usual log-linear interaction terms suggest that a more flexible approach is required. In this paper we consider both classical multilevel approaches and fully Bayesian hierarchical approaches to modelling individual heterogeneity and list interactions. Our framework encompasses both the traditional log-linear approach and various elements from the full Rasch model. We compare these approaches on two examples, the first arising from an epidemiological study of a population of diabetics in Italy, and the second a study intended to assess the ‘size’ of the World Wide Web. We also explore extensions allowing for interactions between the Rasch and log-linear portions of the models in both the classical and the Bayesian contexts.

Keywords: Log-linear models; Markov chain Monte Carlo methods; Multiple-recapture census; Quasi-symmetry; Rasch model

Document Type: Research Article

Affiliations: Carnegie Mellon University, Pittsburgh, USA

Publication date: 1999-03-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more