Skip to main content

Multivariate shrinkage estimation of small area means and proportions

Buy Article:

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

The familiar (univariate) shrinkage estimator of a small area mean or proportion combines information from the small area and a national survey. We define a multivariate shrinkage estimator which combines information also across subpopulations and outcome variables. The superiority of the multivariate shrinkage over univariate shrinkage, and of the univariate shrinkage over the unbiased (sample) means, is illustrated on examples of estimating the local area rates of economic activity in the subpopulations defined by ethnicity, age and sex. The examples use the sample of anonymized records of individuals from the 1991 UK census. The method requires no distributional assumptions but relies on the appropriateness of the quadratic loss function. The implementation of the method involves minimum outlay of computing. Multivariate shrinkage is particularly effective when the area level means are highly correlated and the sample means of one or a few components have small sampling and between-area variances. Estimations for subpopulations based on small samples can be greatly improved by incorporating information from subpopulations with larger sample sizes.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Between-area variation; Economic activityrate; Ethnic minorities; Samples of anonymized records; Shrinkage estimation; UK census

Document Type: Research Article

Affiliations: De Montfort University, Leicester, UK

Publication date: 1999-02-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more