Skip to main content

A method for estimating age-specific reference intervals (‘normal ranges’) based on fractional polynomials and exponential transformation

Buy Article:

$43.00 plus tax (Refund Policy)

The age-specific reference interval is an important screening tool in medicine. Put crudely, an individual whose value of a variable of interest lies outside certain extreme centiles may be suspected of abnormality. We propose a parametric method for constructing such intervals. It provides smooth centile curves and explicit formulae for the centile estimates and for standard deviation (SD) scores (age-standardized values). Each parameter of an exponential–normal or modulus–exponential–normal density is modelled as a fractional polynomial function of age. Estimation is by maximum likelihood. These three- and four-parameter models involve transformations of the data towards normality which remove non-normal skewness and/or kurtosis. Fractional polynomials provide more flexible curve shapes than do conventional polynomials. The method easily accommodates binary covariates facilitating, for example, parsimonious modelling of age- and sex-specific centile curves. A method of calculating precision profiles for centile estimates is proposed. Goodness of fit is assessed by using Q–Q-plots and Shapiro–Wilk W-tests of the SD scores, and likelihood ratio tests of the parameters of an enlarged model. Four substantial real data sets are used to illustrate the method. Comparisons are made with the semiparametric LMS method of Cole and Green.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Centile estimation; Normal distribution; Normal ranges; Normalizing transformations; Parametric models; Reference intervals; Skewness

Document Type: Original Article

Affiliations: Imperial College School of Medicine, London, UK.

Publication date: 1998-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more