Skip to main content

Using Expert Models in Human Reliability Analysis—A Dependence Assessment Method Based on Fuzzy Logic

Buy Article:

$43.00 plus tax (Refund Policy)

In human reliability analysis (HRA), dependence analysis refers to assessing the influence of the failure of the operators to perform one task on the failure probabilities of subsequent tasks. A commonly used approach is the technique for human error rate prediction (THERP). The assessment of the dependence level in THERP is a highly subjective judgment based on general rules for the influence of five main factors. A frequently used alternative method extends the THERP model with decision trees. Such trees should increase the repeatability of the assessments but they simplify the relationships among the factors and the dependence level. Moreover, the basis for these simplifications and the resulting tree is difficult to trace. The aim of this work is a method for dependence assessment in HRA that captures the rules used by experts to assess dependence levels and incorporates this knowledge into an algorithm and software tool to be used by HRA analysts. A fuzzy expert system (FES) underlies the method. The method and the associated expert elicitation process are demonstrated with a working model. The expert rules are elicited systematically and converted into a traceable, explicit, and computable model. Anchor situations are provided as guidance for the HRA analyst's judgment of the input factors. The expert model and the FES-based dependence assessment method make the expert rules accessible to the analyst in a usable and repeatable way, with an explicit and traceable basis.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Expert elicitation; expert judgment; fuzzy expert system; human action dependence; human reliability analysis

Document Type: Research Article

Affiliations: 1: Department of Nuclear Energy and Safety, Paul Scherrer Institute, Villigen PSI, Switzerland. 2: Energy Department, Polytechnic of Milan, Milan, Italy.

Publication date: 2010-08-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more