Skip to main content

Terrorist Population Dynamics Model

Buy Article:

$51.00 plus tax (Refund Policy)


A system that includes a number of terrorist cells is considered. The cells can consist of one or more terrorists. The current number of terrorist cells is further denoted by N(t), where t is a current time counted from any appropriate origin. The objective is to find the evolution of the system in terms of N(t) and some interpretable parameters, such as the initial number of the terrorist cells N0=N(0), the cell disabling rate constant  (or the cell half-life t1/2), and the rate of formation of new cells P. The cost-effectiveness analysis, performed in the framework of the model, reveals that the effectiveness of disabling a terrorist cell is getting worse after 2–3 half-lives of a cell, which shows that if the anti-terrorist actions have not reached their goal during that time, the respective policy should be considered for revision, using the risk assessment consideration. Another important issue raised concerns balancing the efforts related to counterterrorism actions inside the system and the efforts protecting its borders. The respective data analysis is suggested and illustrated using simulated data.

Keywords: Anti-terrorist actions; Monte Carlo simulation; cost-effectiveness analysis; data analysis; population of cells; probabilistic models; rate of formation (disabling) of cells; system borders; system dynamics; terrorists

Document Type: Research Article


Affiliations: Center of Technology and System Management, University of Maryland, College Park, MD, USA.

Publication date: 2006-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more