Skip to main content

Direct Data Manipulation for Local Decision Analysis as Applied to the Problem of Arsenic in Drinking Water from Tube Wells in Bangladesh

Buy Article:

$43.00 plus tax (Refund Policy)

A wide variety of tools are available, both parametric and nonparametric, for analyzing spatial data. However, it is not always clear how to translate statistical inferences into decision recommendations. This article explores the possibilities of estimating the effects of decision options using very direct manipulation of data, bypassing formal statistical analysis. We illustrate with the application that motivated this research, a study of arsenic in drinking water in nearly 5,000 wells in a small area in rural Bangladesh. We estimate the potential benefits of two possible remedial actions: (1) recommendations that people switch to nearby wells with lower arsenic levels; and (2) drilling new community wells. We use simple nonparametric clustering methods and estimate uncertainties using cross-validation.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Cluster analysis; environmental statistics; public health; spatial statistics

Document Type: Research Article

Affiliations: 1: Department of Statistics and Department of Political Science, Columbia University, NY. 2: Department of Economic and Statistical Sciences, University of Trieste, Italy. 3: Thales Corp., NY. 4: Lamont-Doherty Earth Observatory, Palisades, New York.

Publication date: 2004-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more