Skip to main content

A Modeling Framework for Exposing Risks in Complex Systems

Buy Article:

$51.00 plus tax (Refund Policy)


This article introduces and develops a modeling framework for exposing risks in the form of human errors and adverse consequences in high-risk systems. The modeling framework is based on two components: a two-dimensional theory of accidents in systems developed by Perrow in 1984, and the concept of multiple system perspectives. The theory of accidents differentiates systems on the basis of two sets of attributes. One set characterizes the degree to which systems are interactively complex; the other emphasizes the extent to which systems are tightly coupled. The concept of multiple perspectives provides alternative descriptions of the entire system that serve to enhance insight into system processes. The usefulness of these two model components derives from a modeling framework that cross-links them, enabling a variety of work contexts to be exposed and understood that would otherwise be very difficult or impossible to identify. The model components and the modeling framework are illustrated in the case of a large and comprehensive trauma care system. In addition to its general utility in the area of risk analysis, this methodology may be valuable in applications of current methods of human and system reliability analysis in complex and continually evolving high-risk systems.

Keywords: Risk analysis; human reliability analysis; risk identification; system complexity; work contexts

Document Type: Original Article


Affiliations: Department of Industrial Engineering, University of Miami

Publication date: 2000-08-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more