Skip to main content

Spatial Scale Problems and Geostatistical Solutions: A Review

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.


The concept of spatial scale is fundamental to geography, as are the problems of integrating data obtained at different scales. The availability of GIS has provided an appropriate environment to re-scale data prior to subsequent integration, but few tools with which to implement the re-scaling. This sparsity of appropriate tools arises primarily because the nature of the spatial variation of interest is often poorly understood and, specifically, the patterns of spatial dependence and error are unknown. Spatial dependence can be represented and modelled using geostatistical approaches providing a basis for the subsequent re-scaling of spatial data (e.g., via spatial interpolation). Geostatistical techniques can also be used to model the effects of re-scaling data through the geostatistical operation of regularization. Regularization provides a means by which to re-scale the statistics and functions that describe the data rather than the data themselves. These topics are reviewed in this paper and the importance of the spatial scale problems that remain is emphasized.

Keywords: geostatistics; re-scaling; sampling; scale

Document Type: Research Article


Affiliations: 1: University of Southampton, 2: University of Leicester

Publication date: November 1, 2000


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more