Skip to main content

Open-endedness, Schemas and Ontological Commitment

Buy Article:

$43.00 plus tax (Refund Policy)

Abstract

Second-order axiomatizations of certain important mathematical theories—such as arithmetic and real analysis—can be shown to be categorical. Categoricity implies semantic completeness, and semantic completeness in turn implies determinacy of truth-value. Second-order axiomatizations are thus appealing to realists as they sometimes seem to offer support for the realist thesis that mathematical statements have determinate truth-values. The status of second-order logic is a controversial issue, however. Worries about ontological commitment have been influential in the debate. Recently, Vann McGee has argued that one can get some of the technical advantages of second-order axiomatizations—categoricity, in particular—while walking free of worries about ontological commitment. In so arguing he appeals to the notion of an open-ended schema—a schema that holds no matter how the language of the relevant theory is extended. Contra McGee, we argue that second-order quantification and open-ended schemas are on a par when it comes to ontological commitment.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: University of Connecticut

Publication date: 2010-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more