Skip to main content


Buy Article:

$51.00 plus tax (Refund Policy)


ABSTRACT In this paper, we introduce a new spatially constrained clustering problem called the max‐p‐regions problem. It involves the clustering of a set of geographic areas into the maximum number of homogeneous regions such that the value of a spatially extensive regional attribute is above a predefined threshold value. We formulate the max‐p‐regions problem as a mixed integer programming (MIP) problem, and propose a heuristic solution.

Document Type: Research Article


Affiliations: 1: Research in Spatial Economics (RISE-group), Department of Economics, EAFIT University, Carrera 49 7 Sur-50, Medellin, Colombia. 2: GeoDa Center for Geospatial Analysis and Computation, School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ 85287-5302.

Publication date: 2012-08-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more