Skip to main content


Buy Article:

$51.00 plus tax (Refund Policy)


ABSTRACT A common problem with spatial economic concentration measures based on areal data (e.g., Gini, Herfindhal, entropy, and Ellison‐Glaeser indices) is accounting for the position of regions in space. While they purport to measure spatial clustering, these statistics are confined to calculations within individual areal units. They are insensitive to the proximity of regions or to neighboring effects. Clearly, since spillovers do not recognize areal units, economic clusters may cross regional boundaries. Yet with current measures, any industrial agglomeration that traverses boundaries will be chopped into two or more pieces. Activity in adjacent spatial units is treated in exactly the same way as activity in far‐flung, nonadjacent areas. This paper shows how popular measures of spatial concentration relying on areal data can be modified to account for neighboring effects. With a U.S. application, we also demonstrate that the new instruments we propose are easy to implement and can be valuable in regional analysis.

Document Type: Research Article


Affiliations: 1: University of Porto and Division of Research, Moore School of Business, University of South Carolina, Columbia, SC 29208. 2: CEF.UP and Faculty of Economics, University of Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal. 3: Division of Research, Moore School of Business, University of South Carolina, Columbia, SC 29208.

Publication date: 2011-10-01

  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more