Skip to main content


Buy Article:

$43.00 plus tax (Refund Policy)

Bell, R., Petschko, H., Röhrs, M. and Dix, A. Assessment of landslide age, landslide persistence and human impact using airborne laser scanning digital terrain models. Geografiska Annaler: Series A, Physical Geography, 94, 135–156. doi:10.1111/j.1468‐0459.2012.00454.x

Landslides occur worldwide and contribute significantly to sediment budgets as well as to landform evolution. Furthermore, they pose hazards and risks to people and their goods. To assess the role of landslides, information on their age or persistence (i.e. the length of time the morphological characteristics of a landslide remain recognizable in the terrain) is essential. In this study, the potential of airborne laser scanning digital terrain models (ALS DTMs) is analysed for estimating landslide age, landslide persistence and human impact. Therefore, landslides in two study areas, Swabian Alb in Germany and Lower Austria in Austria, are mapped from hillshades of ALS DTMs and combined with historical information on landslide occurrence. It is tested whether the modification of the geomorphological features of landslides can be used to assess landslide age. In the Swabian Alb older landslides might show fresher features than younger ones because of different degrees of human impact, natural erosion and different histories of landslide reactivation. Estimated persistence times range between 27 and 320 years but are minimum values only. In Lower Austria four landslides show estimated minimum persistence times between 4 and 28 years. In Lower Austria 27 landslides disappeared in less than 7 years after occurrence mainly because of planation by farmers. The results show no clear trend in landslide persistence, neither regarding landslide magnitude, nor regarding land use. However, it is evident that human impact plays a major role in landslide persistence.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Geography and Regional Research, University of Vienna, Vienna, Austria 2: Institute for Applied Remote Sensing, EURAC Research, Bolzano, Italy 3: Department of Geography, University of Bamberg, Bamberg, Germany

Publication date: 01 March 2012

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more