Skip to main content


Buy Article:

$51.00 plus tax (Refund Policy)



This paper describes the structural glaciology of the lower Fox Glacier, a 12.7 km-long valley glacier draining the western side of the Southern Alps, New Zealand. Field data are combined with analysis of aerial photographs to present a structural interpretation of a 5 km-long segment covering the lower trunk of the glacier, from the upper icefall down-glacier to the terminus. The glacier typifies the structural patterns observed in many other alpine glaciers, including: primary stratification visible within crevasse walls in the lower icefall; foliation visible in crevasses below the lower icefall; a complex set of intersecting crevasse traces; splaying and chevron crevasses at the glacier margins; transverse crevasses forming due to longitudinal extension; longitudinal crevasses due to lateral extension near the snout; and, arcuate up-glacier dipping structures between the foot of the lower icefall and the terminus. The latter are interpreted as crevasse traces that have been reactivated as thrust faults, accommodating longitudinal compression at the glacier snout. Weak band-ogives are visible below the upper icefall, and these could be formed by multiple shearing zones uplifting basal ice to the glacier surface to produce the darker bands, rather than by discrete fault planes. Many structures such as crevasses traces do not show a clear relationship with measured surface strain-rates, in which case they may be ‘close to crevassing’, or are undergoing passive transport down-glacier.

Keywords: New Zealand; ground-penetrating radar; mapping; strain rate; structural glaciology

Document Type: Research Article


Affiliations: 1: Geography Programme, School of People, Environment and Planning, Massey University, Palmerston North, New Zealand 2: Department of Earth Sciences, Institute of Natural Resources, Massey University, Palmerston North, New Zealand

Publication date: 2010-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more