Skip to main content

Phospholemman: A Novel Cardiac Stress Protein

Buy Article:

$51.00 plus tax (Refund Policy)



Phospholemman (PLM), a member of the FXYD family of regulators of ion transport, is a major sarcolemmal substrate for protein kinases A and C in cardiac and skeletal muscle. In the heart, PLM co-localizes and co-immunoprecipitates with Na+-K+-ATPase, Na+/Ca2+ exchanger, and L-type Ca2+ channel. Functionally, when phosphorylated at serine68, PLM stimulates Na+-K+-ATPase but inhibits Na+/Ca2+ exchanger in cardiac myocytes. In heterologous expression systems, PLM modulates the gating of cardiac L-type Ca2+ channel. Therefore, PLM occupies a key modulatory role in intracellular Na+ and Ca2+ homeostasis and is intimately involved in regulation of excitation–contraction (EC) coupling. Genetic ablation of PLM results in a slight increase in baseline cardiac contractility and prolongation of action potential duration. When hearts are subjected to catecholamine stress, PLM minimizes the risks of arrhythmogenesis by reducing Na+ overload and simultaneously preserves inotropy by inhibiting Na+/Ca2+ exchanger. In heart failure, both expression and phosphorylation state of PLM are altered and may partly account for abnormalities in EC coupling. The unique role of PLM in regulation of Na+-K+-ATPase, Na+/Ca2+ exchanger, and potentially L-type Ca2+ channel in the heart, together with the changes in its expression and phosphorylation in heart failure, make PLM a rational and novel target for development of drugs in our armamentarium against heart failure. Clin Trans Sci 2010; Volume 3: 189–196

Keywords: ion transport regulator; phospholemman; protein kinase

Document Type: Research Article


Affiliations: Division of Nephrology and Center of Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Publication date: August 1, 2010


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more