Skip to main content


Buy Article:

$43.00 + tax (Refund Policy)

The increasing use of auctions as a selling mechanism has led to a growing interest in the subject. Thus both auction theory and experimental examinations of these theories are being developed. A recent method used for carrying out examinations on auctions has been the design of computational simulations. The aim of this article is to develop a genetic algorithm to find automatically a bidder optimal strategy while the other players are always bidding sincerely. To this end a specific dynamic multiunit auction has been selected: the Ausubel auction, with private values, dropout information, and with several rationing rules implemented. The method provides the bidding strategy (defined as the action to be taken under different auction conditions) that maximizes the bidder's payoff. The algorithm is tested under several experimental environments that differ in the elasticity of their demand curves, number of bidders and quantity of lots auctioned. The results suggest that the approach leads to strategies that outperform sincere bidding when rationing is needed.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Ausubel auction; bidder strategy; dynamic multi-unit; genetic algorithm; rationing values

Document Type: Research Article

Affiliations: 1: Department of Computer Science, Universidad Carlos III de Madrid, Leganes, Madrid, Spain 2: Department of Applied Economics, UNED, Madrid, Spain

Publication date: 01 May 2007

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more