If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Analysis of Neuronal, Glial, Endothelial, Axonal and Apoptotic Markers Following Moderate Therapeutic Hypothermia and Anesthesia in the Developing Piglet Brain

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Hypothermia (HT) by whole body (WBC) or selective head cooling (SHC) reduces hypoxic-ischemic (HI) brain injury; however, whether prolonged hypothermia and/or anesthesia disrupts immature brain development, eg, increases apoptosis, is unknown. Anesthesia increases apoptosis in immature animals. We investigated whether neuroprotective hypothermia and anesthesia disrupts normal brain development. Thirty-eight pigs <24 h old were randomized between five groups and were killed after 72 h: eighteen received a global hypoxic-ischemic insult under anesthesia, eight subsequently cooled by SHC with WBC to Trectal 34.5°C for 24 h, followed by 48 h normothermia (NT) at Trectal 39.0°C, while 10 remained normothermic. Sixteen underwent anesthetized sham hypoxic-ischemic, six then following normothermia and 10 following hypothermia protocols. There were four normothermic controls. The hypothermia groups demonstrated significant brain hypothermia. In the hypoxic-ischemic groups this conferred ~60% neuroprotection reducing histological injury scores in all brain areas. Immunohistochemical/histochemical analyses of neuronal, glial, endothelial, axonal, transcriptional apoptotic markers in areas devoid of histological lesions revealed no hypothermia/normothermia group and differences whether exposed to hypoxic-ischemic or not. Neither 36-h anesthesia nor 24-h hypothermia produced adverse effects at 4-day survival on a panel of brain maturation/neural death markers in newborn pigs. Longer survival studies are necessary to verify the safety of hypothermia in the developing brain.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1750-3639.2007.00095.x

Publication date: January 1, 2008

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more