Skip to main content

Bacterial chemotaxis toward a NAPL source within a pore‐scale microfluidic chamber

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Abstract

Chemotaxis toward chemical pollutants provides a mechanism for bacteria to migrate to locations of high contamination, which may improve the effectiveness of bioremediation. A microfluidic device was designed to mimic the dissolution of an organic‐phase contaminant from a single pore into a larger macropore representing a preferred pathway for microorganisms that are carried along by groundwater flow. The glass windows of the microfluidic device allowed direct image analysis of bacterial distributions within the vicinity of the organic contaminant. Concentrations of chemotactic bacteria P. putida F1 near the organic/aqueous interface were 25% greater than those of a nonchemotactic mutant in the vicinity of toluene for a fluid velocity of 0.5 m/d. For E. coli responding to phenol, the bacterial concentrations were 60% greater than the controls, also at a velocity of 0.5 m/d. Velocities in the macropore were varied over a range from 0.5 to 10 m/d, the lower end of which is typical of groundwater velocities. The accumulation of chemotactic bacteria near the NAPL chemoattractant source decreased as the fluid velocity increased. Good agreement between computer‐based simulations, generated using reasonable values of the model parameters, and the experimental data for P. putida strains confirmed the contribution due to chemotaxis. The experimental data for E. coli required a larger chemotactic sensitivity coefficient than that for P. putida, which was consistent with parameter values reported in the literature. Biotechnol. Bioeng. 2012; 109:1622–1628. © 2012 Wiley Periodicals, Inc.

Document Type: Research Article

DOI: http://dx.doi.org/10.1002/bit.24437

Affiliations: Department of Chemical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia 22904; telephone: 434-924-6283;, Fax: 434-982-2658

Publication date: July 1, 2012

bpl/bit/2012/00000109/00000007/art00009
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more