Skip to main content

Smoothing Population Size Estimates for Time‐Stratified Mark–Recapture Experiments Using Bayesian P‐Splines

Buy Article:

$43.00 plus tax (Refund Policy)

Summary Petersen‐type mark–recapture experiments are often used to estimate the number of fish or other animals in a population moving along a set migration route. A first sample of individuals is captured at one location, marked, and returned to the population. A second sample is then captured farther along the route, and inferences are derived from the numbers of marked and unmarked fish found in this second sample. Data from such experiments are often stratified by time (day or week) to allow for possible changes in the capture probabilities, and previous methods of analysis fail to take advantage of the temporal relationships in the stratified data. We present a Bayesian, semiparametric method that explicitly models the expected number of fish in each stratum as a smooth function of time. Results from the analysis of historical data from the migration of young Atlantic salmon (Salmo salar) along the Conne River, Newfoundland, and from a simulation study indicate that the new method provides more precise estimates of the population size and more accurate estimates of uncertainty than the currently available methods.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Statistics, University of Kentucky, Lexington, Kentucky 40506, U.S.A. 2: Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

Publication date: 2011-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more