Skip to main content

Additive Mixed Effect Model for Clustered Failure Time Data

Buy Article:

$51.00 plus tax (Refund Policy)

Summary We propose an additive mixed effect model to analyze clustered failure time data. The proposed model assumes an additive structure and includes a random effect as an additional component. Our model imitates the commonly used mixed effect models in repeated measurement analysis but under the context of hazards regression; our model can also be considered as a parallel development of the gamma‐frailty model in additive model structures. We develop estimating equations for parameter estimation and propose a way of assessing the distribution of the latent random effect in the presence of large clusters. We establish the asymptotic properties of the proposed estimator. The small sample performance of our method is demonstrated via a large number of simulation studies. Finally, we apply the proposed model to analyze data from a diabetic study and a treatment trial for congestive heart failure.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina 27599-7420, U.S.A.

Publication date: 2011-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more