Skip to main content

Inverse Probability of Censoring Weighted Estimates of Kendall's  for Gap Time Analyses

Buy Article:

$43.00 plus tax (Refund Policy)


In life history studies, interest often lies in the analysis of the interevent, or gap times and the association between event times. Gap time analyses are challenging however, even when the length of follow-up is determined independently of the event process, because associations between gap times induce dependent censoring for second and subsequent gap times. This article discusses nonparametric estimation of the association between consecutive gap times based on Kendall's  in the presence of this type of dependent censoring. A nonparametric estimator that uses inverse probability of censoring weights is provided. Estimates of conditional gap time distributions can be obtained following specification of a particular copula function. Simulation studies show the estimator performs well and compares favorably with an alternative estimator. Generalizations to a piecewise constant Clayton copula are given. Several simulation studies and illustrations with real data sets are also provided.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Copula; Dependent censoring; Gap times; Kendall's 

Document Type: Research Article

Publication date: 2010-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more